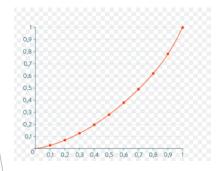


- Epidémiologie du Cancer bronchique
- Radiothérapie thoracique
 - Généralités
 - ► Techniques : IMRT, stéréotaxie
 - Particularité du sujet âgé
- Radiothérapie dans les cancers bronchiques du sujet âgé selon les indications
 - Localisé
 - ▶ Localement avancé
 - ► CBNPC
 - ► CPC
 - Palliatif

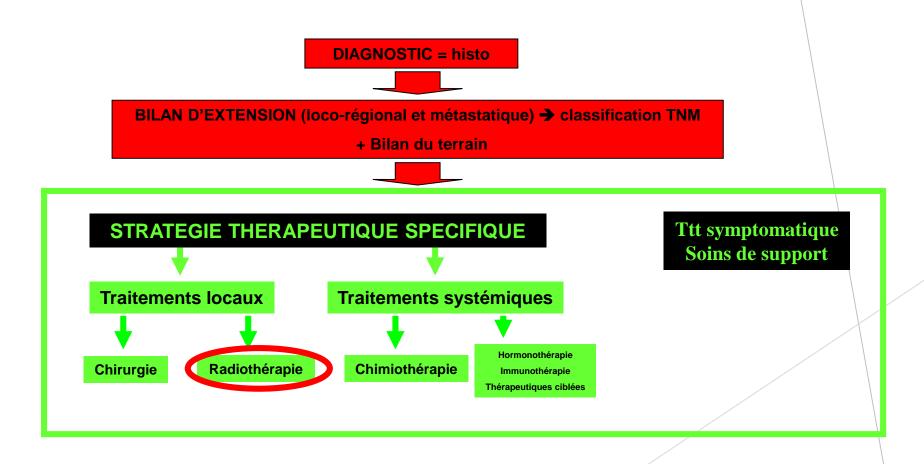
Épidémiologie du cancer du poumon

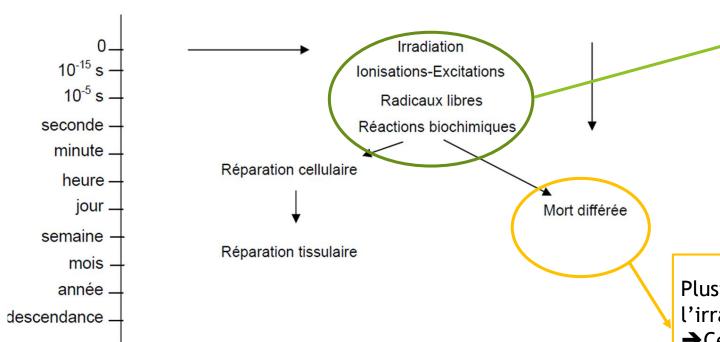
Incidence: 2 ème cancer chez l'homme et 4ème chez la femme

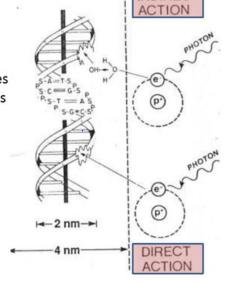
Mortalité: 1er chez l'homme; 3ème chez la femme


Épidémiologie

- ▶ 69% des patients > 65 ans, **36% > 75 ans**
- ► Tendance des dernières années : Augmentation incidence pour les >70ans




Généralités : radiothérapie

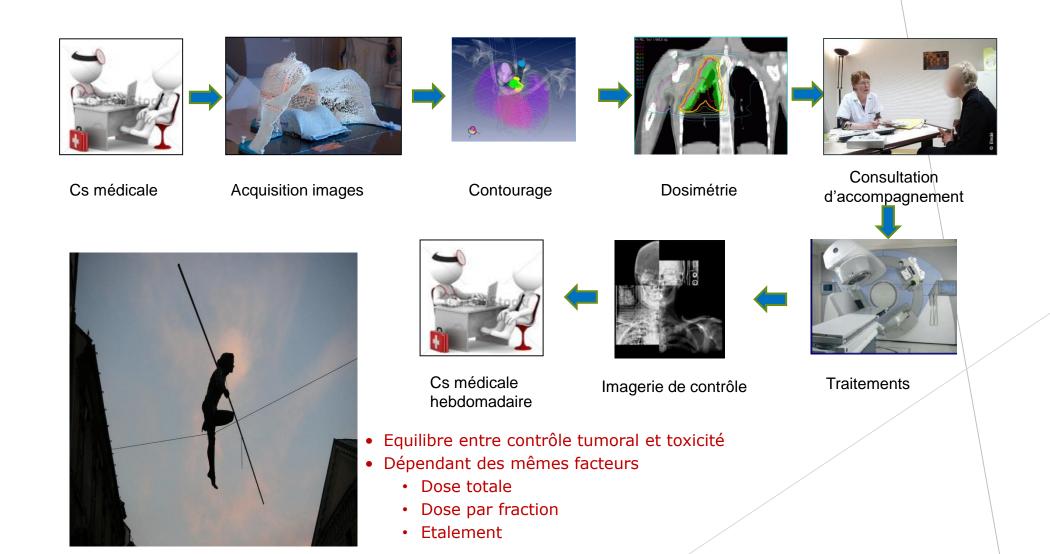

4 étapes successives : physique, chimique,

cellulaire, tissulaire

Action indirecte:
 formation de radicaux libres
 par radiolyse des molécules
 d'eau (mécanisme
 prépondérant)

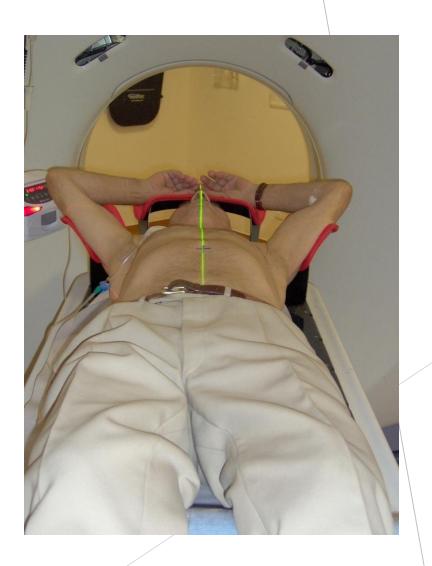
Action directe:
 transfert d'énergie
 directement sur les
 macromolécules (15-20%)

INDIRECT


Plusieurs jours à plusieurs semaines après l'irradiation :

- → Cela explique le délai d'apparition:
 - De l'effet anti tumoral
 - Des effets secondaires (tissus sains)

Parcours en radiothérapie

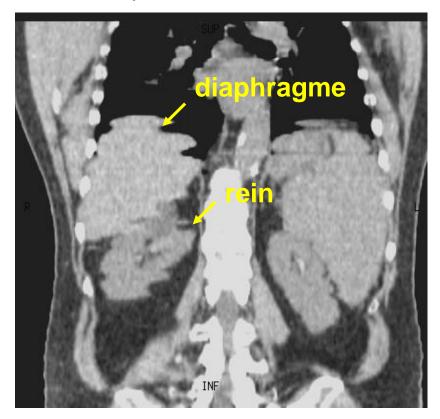


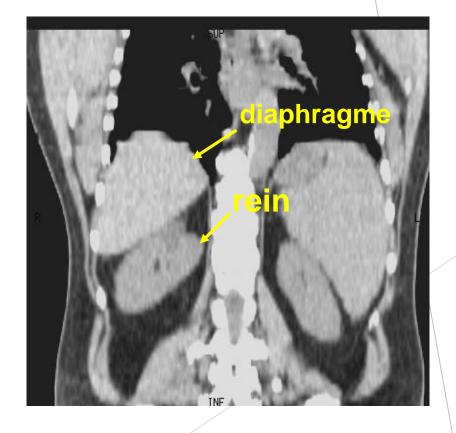
Scanner de planification

- Installation du patient :
 - Decubitus dorsal
 - ▶ Bras relevé au dessus tête

► Masque 5 point pour tumeur apicale

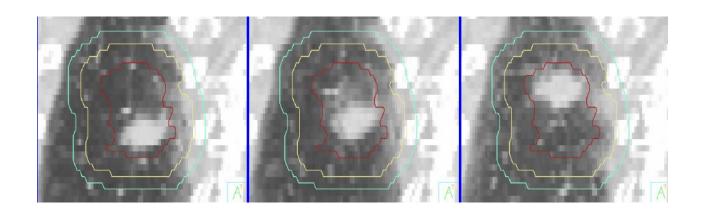





Scanner 4 D : Les mouvements respiratoires

Variations anatomiques

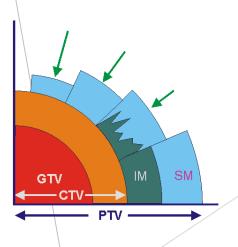
En respiration libre


En apnée

Limite la précision du traitement

Scanner 4 D: Les mouvements respiratoires

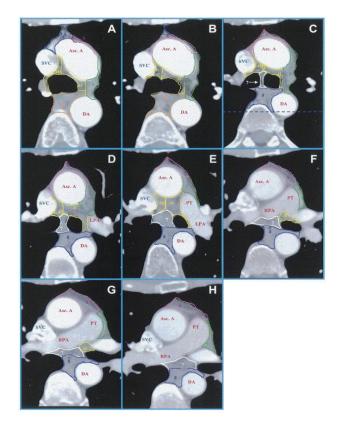
TDM 4D (ou en acquisition lente) pour déterminer un ITV



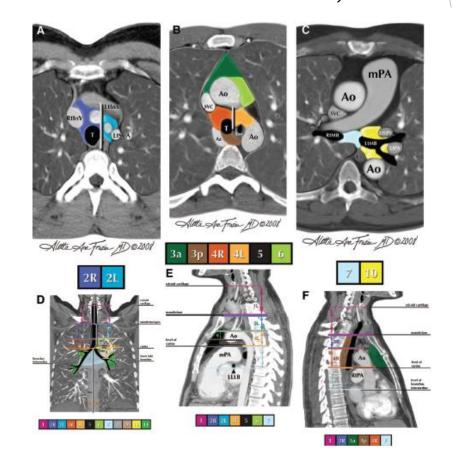
Définition des volumes

Contourage: Volumes T

- ► GTV T
- ► CTV T: GTV + maladie microscopique
- > PTV T:
 - ► IM ou ITV= mouvement de l'organe/tumeur du fait de la respiration. Lobe inf +++
 - ITV personnalisé avec un scanner 4D
 - ► Set-up = Incertitudes de repositionnement

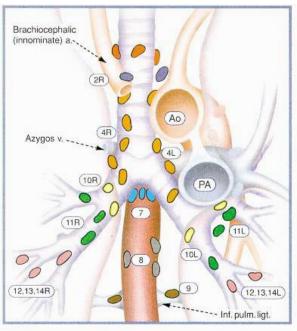


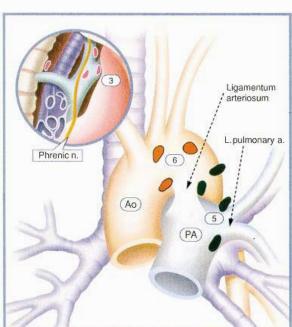
Contourage


Utilisation du PET scanner Fusion avec le scanner de planification

Atlas : aires médiastinales

Chapet et al IJROBP 2005




Rush et al, JTO 2009

Superior Mediastinal Nodes

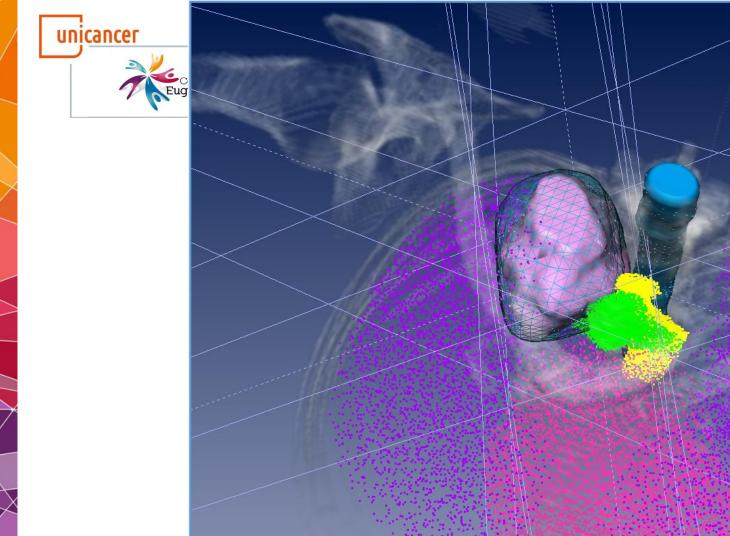
- 1 Highest Mediastinal
- 2 Upper Paratracheal
- 3 Pre-vascular and Retrotracheal
- 4 Lower Paratracheal (including Azygos Nodes)

 N_2 = single digit, ipsilateral N_3 = single digit, contralateral or supraclavicular

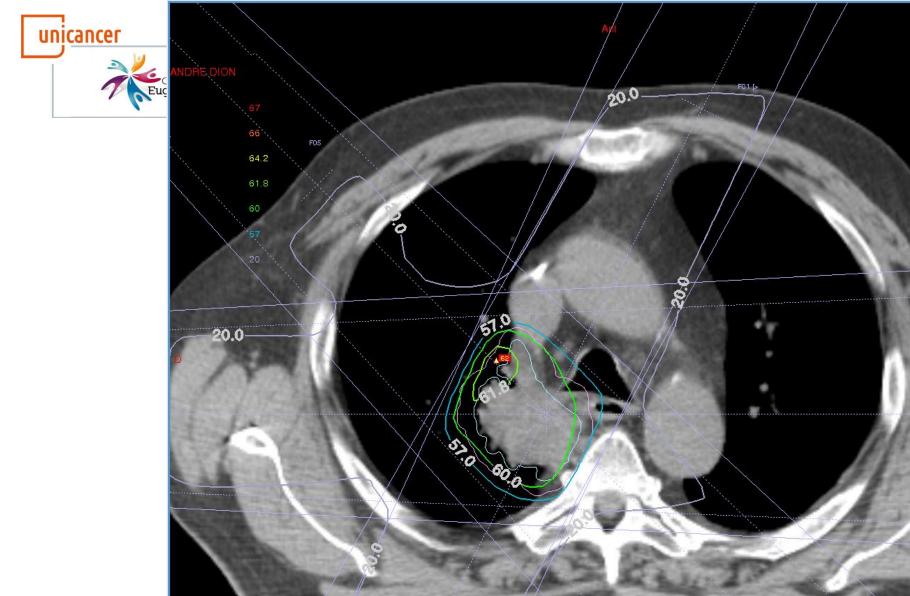
Aortic Nodes

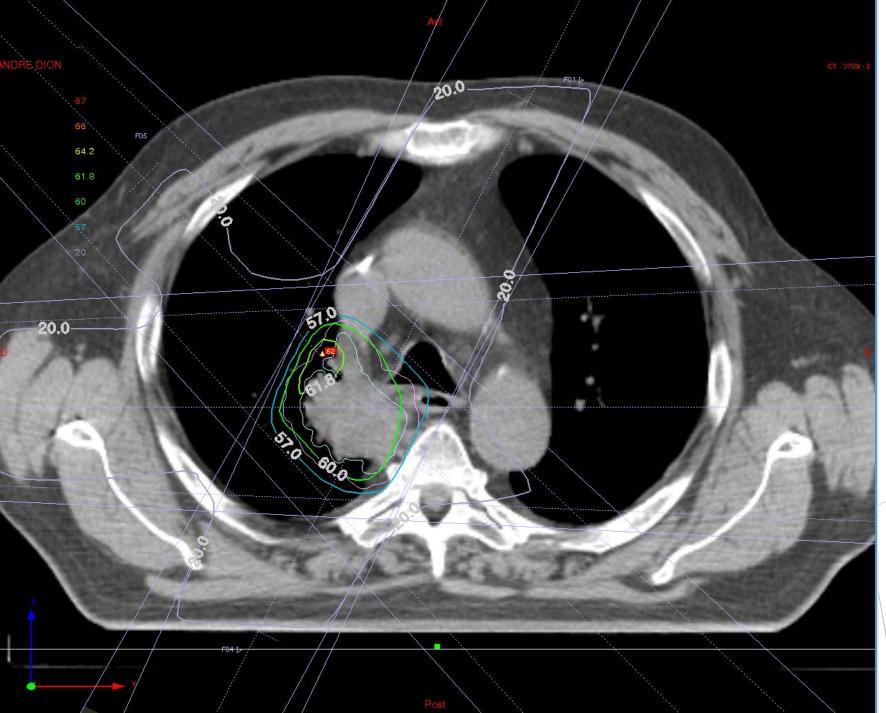
- 5 Subaortic (A-P window)
- 6 Para-aortic (ascending aorta or phrenic)

Inferior Mediastinal Nodes

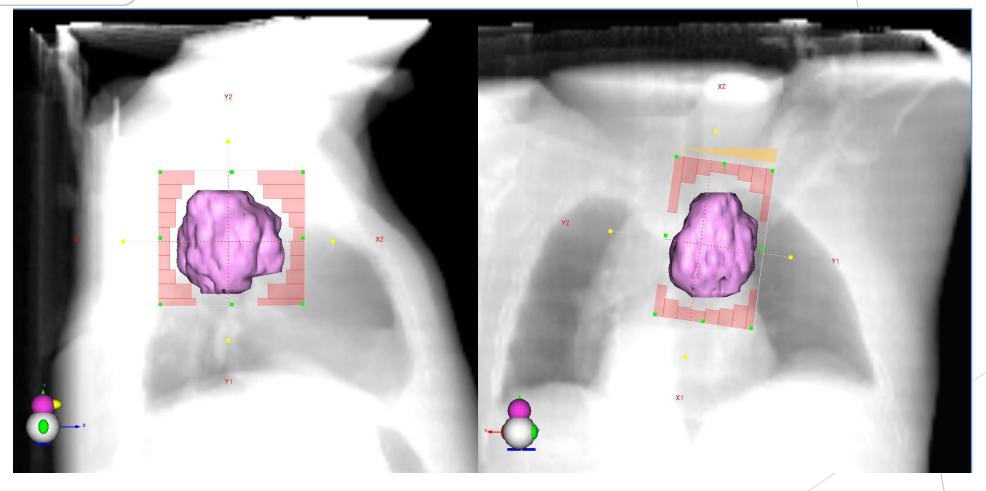

- 7 Subcarinal
- 8 Paraesophageal (below carina)
- 9 Pulmonary Ligament

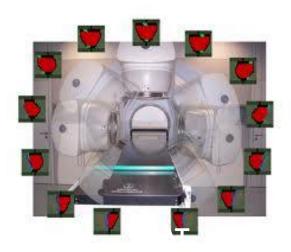
N₁ Nodes


- O 10 Hilar
- 11 Interlobar
- 12 Lobar
- 13 Segmental
- 14 Subsegmental

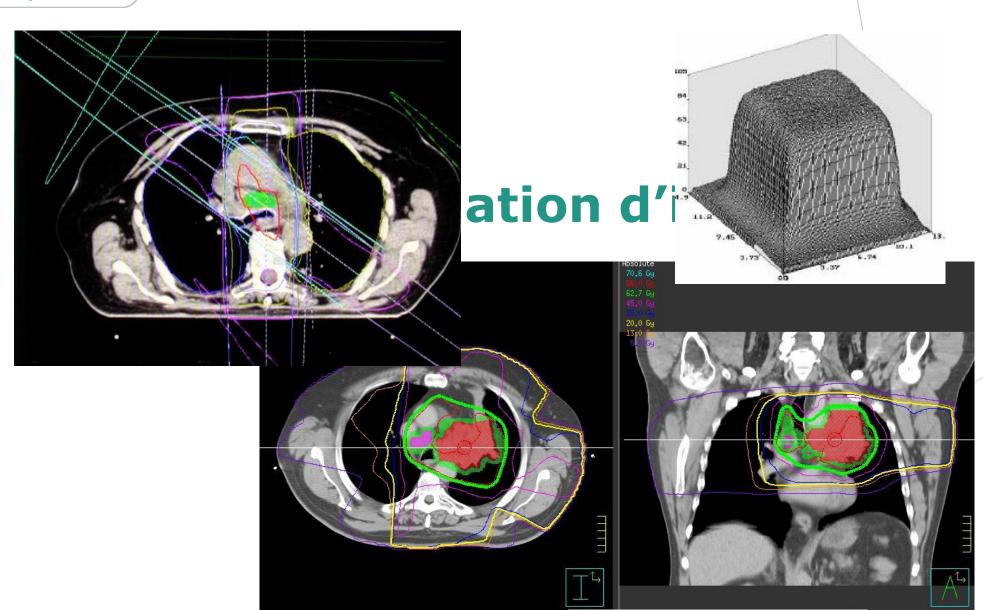

Drainage Ganglionnaire

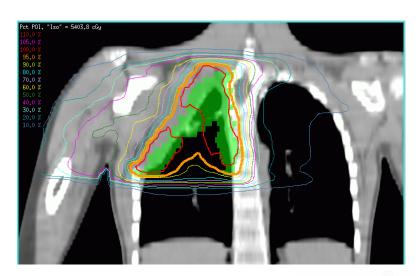
Classification de Moutain

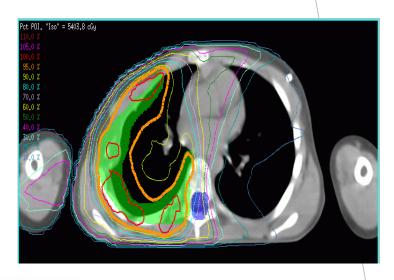


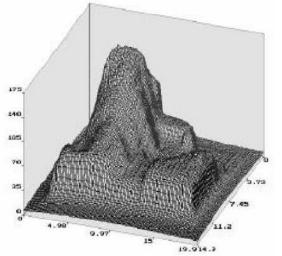


Techniques de RCMI

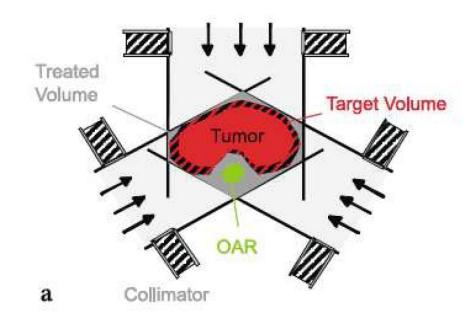


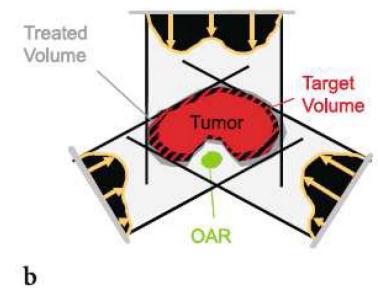




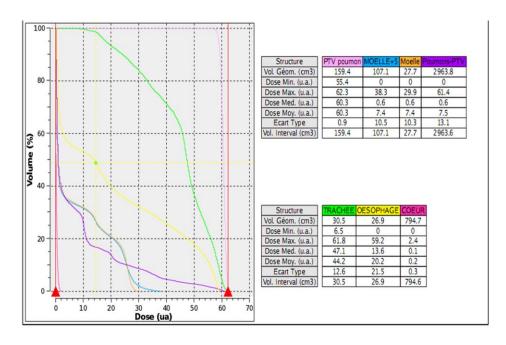


Faisceau modulé en intensité





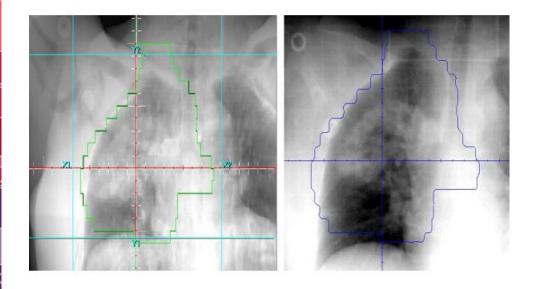
IMRT épargne des organes à risque

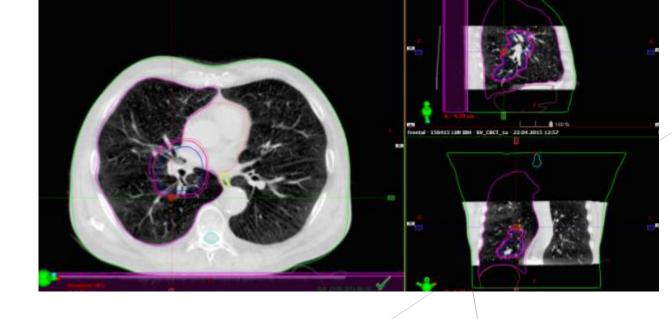


Validation médicale de la distribution de dose

- 1) Qualitative: visualisation de la distribution de dose dans différents plans de l'espace
- 2) Quantitative: les histogrammes dose-volume cumulatifs (HDV)

+ Validation physicien

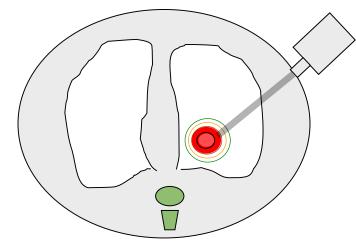



le patient est repositionné comme au scanner à l'aide des lasers et des points de tatouage

IGRT

Radiographie

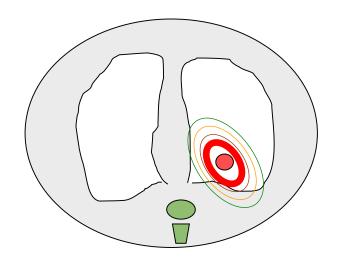
CBCT



Radiothérapie stéréotaxique (SBRT) pulmonaire

RT de haute précision (stéréotaxique) permettant un hypo fractionnement sévère (fortes doses/ fravec étalement court)

Accélarateur avec bras robotisé et tracking (Cyberknife)


https://www.youtube.com/watch?v=lGZfbX2 qyc8

Radiothérapie stéréotaxique (SBRT) pulmonaire

LINAC +/- asservissement respiratoire

Particularités du sujet âgé

- Aspects logistiques
- Positionnement
- Acquisition des données anatomiques
- Paramètres de l'irradiation

Aspects logistiques

- Leur sous-estimation peut engendrer un <u>défaut d'observance</u> de la part du patient préjudiciable au pronostic oncologique.
- Radiothérapie = en général séances multiples

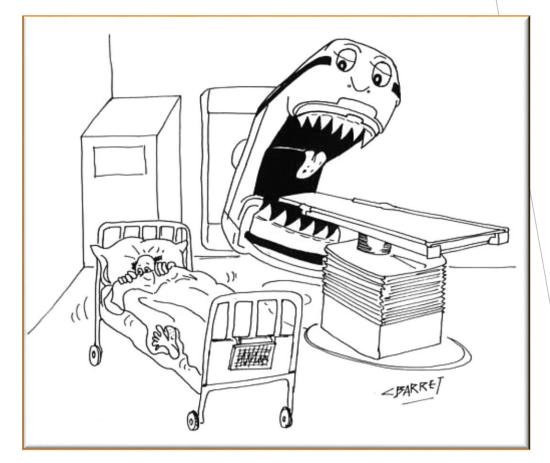
Radiothérapie au plus près du domicile

Privilégier les schémas hypofractionnés

Organisation de la planification quotidienne (temps supplémentaires pour les mises en place chez des patients moins autonomes : difficultés à se mouvoir, se déshabiller...)

Aide au maintien à domicile, pour **limiter l'hospitalisation** souvent déstructurante

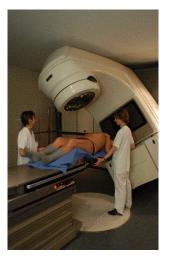
Importance de la consultation hebdomadaire en radiothérapie pour re évaluer !


Aspect logistiques

▶ RT peut être compliquée par la présence d'un pacemaker qui ne doit pas être irradié.

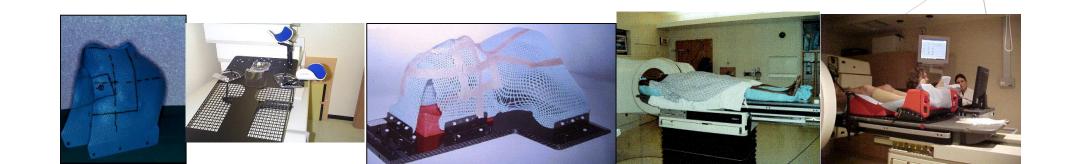
Présence de rayonnement électomagnétique = source éventuelle de dysfonctionnement (quelle que soit la topographie de l'irradiation)

Surveillance par un cardiologue



- Comme pour tout patient,
 - importance des explications, reformulations, cs accompgnement, etc...
- Anxiété +++ / maladie, technicité, mort (....)

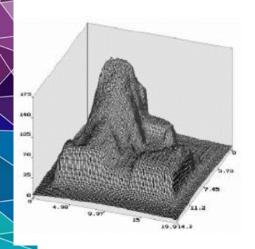
Positionnement

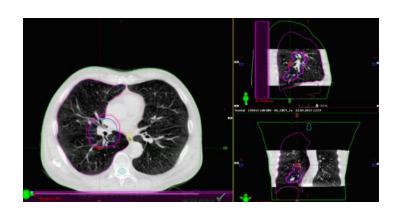

- Choix de la position de traitement pour reproductibilité et « confort »:
 - b doit être adéquat par rapport à la topographie de la tumeur.
 - ▶ Mais, chez le sujet âgé, certaines positions peuvent s'avérer impossibles :
 - Difficulté du maintien des bras relevés en raison d'un défaut de mobilité et/ou de pathologies rhumatologiques associées.
- Immobilité (démence, agitation, Parkinson sévère ...), risque de chutes : ! Hauteur des tables

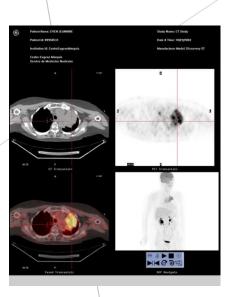
Positionnement

- ► Immobilisation par contention :
 - Quelque soit l'âge du patient, mais particulièrement utile chez le sujet âgé pour maintenir une position
 - Mousses de polyuréthane, matelas à dépression, cale tête, repose genoux
 - ▶ Pallient à la rigidité et la dureté de la table de traitement

Acquisition des données anatomiques


- Scanner de repérage 4D: nécessité de compréhension des consignes respiratoires
- Acquisition des données anatomiques en position de traitement par un scanner permettant la réalisation d'une dosimétrie à l'aide de logiciels adaptés.
- Problématique essentielle du scanner dosimétrique chez le sujet âgé :
 - injection de produits de contraste néphrotoxiques mais permettant une meilleure visualisation de la tumeur et des adénopathies tumorales.




Paramètres de l'irradiation : optimisation des techniques

- IMRT
- ▶ IGRT
- Stéréotaxie
- Précision du volume de contourage : Couplage CT/TEP

Paramètre d'irradiation : schéma d'irradiation

Prescription classique d'une radiothérapie: 2Gy/fraction 5j/7

Avantage:

Moins de séance pour une équivalence biologique Considérations logistiques : limitations des transports Obtention plus rapide l'effet recherché (antalgique, hémostatique, décompressif)

Inconvénient:

Toxicité tardive lié à l'augmentation de la dose / fraction Chez le sujet âgé, considéré comme moins limitante

Très utilisé en situations palliatives

En curatif pour petit volume hypofractionnement sévère (stade I+++) ou modérée (stade III si le volume le permet)

Non accélérée

accélérée

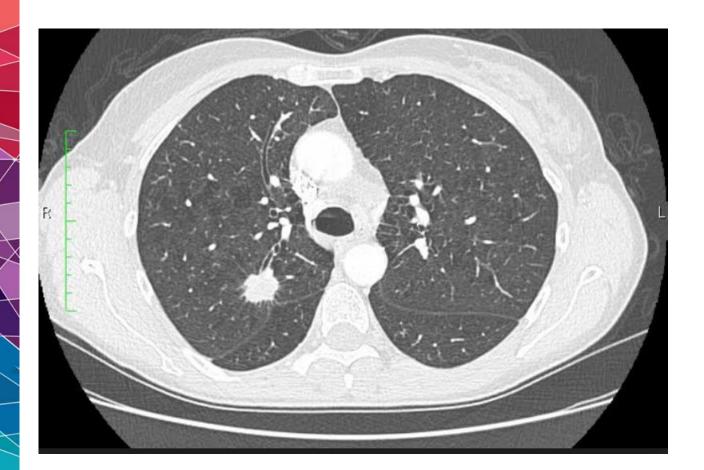
Indications de la radiothérapie cancer bronchique

1) A visée curative

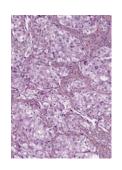
Objectif = guérison

- **Stade I(II):** Hypo-fractonnement sévère en conditions stéréotaxiques (48-50-54 Gy en 3 à 5 fct)
- **Stade III**: Normo-fractionnement (60/66 Gy en 2/2,2Gy) et Hypo-fractionnement modéré (55 à 66Gy en 2,75Gy par fractions)

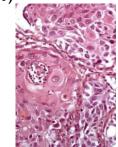
2) A visée palliative

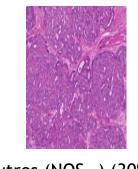

Objectifs: Qualité de vie

- Diminution de la douleur
- A visée décompressive (moelle, veine cave,...)
- A visée hémostatique
- → Schéma court : 30Gy en 10 fct; 20 Gy en 5 fct



Carcinome Bronchique Non à Petites Cellules (CBNPC) stade I (voire IIA)


Stade I (\approx 20%) : T < 5 cm N0 M0

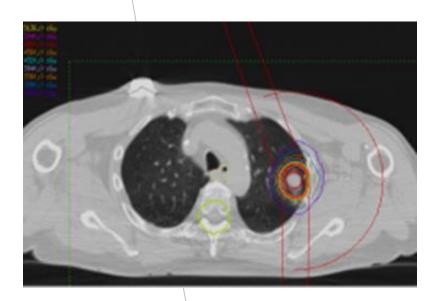


Adénocarcinome (40%)

Carcinome Epidermoïde (30%)

Autres (NOS...) (30%)

CBNPC localisé : Traitement


Recommandations Européennes (ESMO) et américaines (NCCN) :

- Chirurgie en première intention
- Radiothérapie stéréotaxique (SBRT), option standard si :
 - ▶ Contre-indication chirurgicale (insuffisance respiratoire ou cardiaque +++)
 - ► Refus du patient
 - Possibilité de traitement sans preuve histologique

Résultats SBRT:

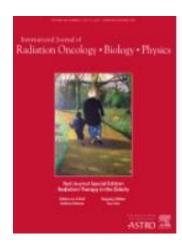
Contrôle local à 2 ans : 90%

Survie globale à 2 ans: 60% (hétérogène selon les études)

Louie, radiother oncol, 2015 Samson, Lung cancer, 2017 Chang, Lancet oncol, 2015 Brock, Clin Oncol 2008 Davies, Radiat Oncol, 2015

Excellente tolérance : toxicité pariétale (2%) Pneumopathie G3 <2%

Contrôle local: Équivalent à la chirurgie : de l'ordre de 90% à 2 ans


Median f/u Patients Age (years) Median RT dose LC RF DM PFS OS Toxicities (Gy/fractions) (months) Haasbeek et al [32] 193 ≥75 60/5 (peripheral) 60/8 NR Pneumonitis G≥3: 2.1% Chest wall G≥1: 4.7% 12.6 3-vr 89.3% 3-vr 3-vr 3-vr 45.1% (central) 20.7% Van der Voort van Zyp et 38 ≥80 60/3 (peripheral) 60/8 central 23 NR Pneumonitis G≥3: 2.6% Chest wall G≥2: 2.6% 2-yr 100% Palma et al [33] 60 ≥75 60 in 3, 5, or 8Fx NR NR NR NR 3-yr 42% NR Chan et al [34] ≥70 54-60/3 (peripheral) 50/5 NR 2-yr 87% Pneumonitis/Chest wall G≥2: 0% 16 2-yr 91% (central) ≥80 50/5 (peripheral) 40/5 Pneumonitis G≥3: 4.6% Chest wall G2: 8.3% Takeda et al [7] 109 24.2 3-yr 83.6% 3-yr 3-yr 23.2 3-yr 3-yr (central) 9.9% 65.9% 53.7% 48/4 and 54-60/3 Samuels et al [35] 12.4 84.8% Pneumonitis G≥3: 0% (5/11 missing grade) Chest wall G≥1: 20% 48/4 (peripheral) 50/10 13 NR 1-vr 68% 1-vr 70% Global G≥2: 0% Karam et al [36] 31 ≥65 (Median 1-vr 80% 1-vr 73) (central) 20% Sandhu et al [9] 24 ≥80 48/4 (peripheral) 27.6 2-yr 77% 2-yr 74% Pneumonitis G≥3: 0% Chest wall G≥3: 0% 2-yr 100% 2-yr 9% 2-yr 17% Pneumonitis G≥3: 10% Rib fracture: 25% Hayashi et al [37] 20 ≥85 48/4 (peripheral) 60/10 3-year (central) 91.8% 44,7% 40.7% 35 50/4-5 45 Pneumonitis G5: 2.8% Nakagawa et al [38] 40% LRC NR NR 3-vr 73.7% ≥75 54/3 (peripheral) NR (central) 35.5 Pneumonitis G≥3: 9% Chest wall G≥3: 0% Mancini et al [39] 126 3-vr 84.2% NR 3-vr 11% NR 3-vr 47.5% Wang et al [40] 74 ≥70 (Mean 82) 60/5 61.9 68.8% 3-yr LRC 3-yr 3-yr 43.7% 54.9% 330 ≥75 50/4 (peripheral) 70/10 55.2 93% NR Pneumonitis G≥3: 0.6% Chest wall G≥2: 5.4% Brooks et al [41] 10.3% 16.7% 3-vr 57.5% (central) 54/3 (peripheral) 60/8 Global G≥2: 0% Kreinbrink et al [42] 31 100% 3-yr 2-vr NR 2-vr (central) LRC 19.9% 59.2% Pneumonitis G≥3: 3.5% Chest wall G≥2: 5.2% Cassidy et al [43] 58 ≥80 50/5 19.9 90% 21% 10.4% NR 3-yr 56.4% 19 ≥90 50/5 17.3 Pneumonitis $G \ge 1$: 0% Chest wall $G \ge 1$: 5.2% Videtic et al [44] 94.4% 15.9% 10.6% 2-yr 2-yr 48.6% 47.8% Maebayashi et al [45] 43 ≥65 48/4 46 93% 4.70% 16.30% Pneumonitis G≥2: 13.9% Rib fracture: 20.9% 2-vr 71.5%

Shinde, Seminars, 2018

SBRT et personnes âgés

- Étude rétrospective : SBRT 80 ans et +
- ▶ 1083 patients => 3 catégories d'âge (<70 ; 70-80 ; >80 ans soit 330pts)
- Comparaison >80ans et le reste de la population:
- → Contrôle local équivalent (95% à 2 ans)
- → Toxicité équivalente:
 - → Pneumopathie G3+ <2%</p>

"All patients with early-stage lung cancer, **regardless of age**, should be considered for treatment with SBRT"

Au CEM

LUNG CANCER
THE PROPERTY OF T

- 2012-2020 : 50% des patients ont plus de 74 ans
- Résultats **équivalent** à la littérature :
 - ▶ âge facteur non significatif en analyse uni variée pour le contrôle local (>95% à 2 ans)

	Local control				Overall survival			
Variables	HR	R p 95% CI		% CI	HR	р	959	6 CI
Center (reference : Rennes)								
Nice	1,09	0,83	0,50	2,36	1,15	0,41	0,81	1,65
Lyon	0,71	0,48	0,28	1,84	0,88	0,55	0,58	1,34
Nantes	0.91	0,83	0,39	2,14	0,68	0,08	0,44	1,05
Age (years)	1,03	0,11	0,99	1,06	1,02	0,0016	1,01	1,04
Gender (Male vs Female)	0,81	0,54	0,42	1,57	1,26	0,18	0,90	1,76
T stage (T1 vs T2)	1,08	0,82	0,55	2,14	1,72	< 0,001	1,29	2,27
Tumor localization (Central vs Peripheral)	0,65	0,23	0,32	1,32	1,04	0,86	0,71	1,52
Irridiation schedule (Continuous vs Discontinuous)	0,48	0,02	0,26	0,89	0,66	0,0025	0,50	0,86
Treatment Duration (Days)	0,85	0,42	0,58	1,25	0,76	0,0036	0,63	0,91
Biologically effective Dose (BED < 100Gy vs > 100Gy)	0,69	0,37	0,31	1,56	0,93	0,74	0,60	1,44
Dose by fraction (Gy)	0,95	0,11	0,90	1,01	1,01	0,48	0,98	1,04
Number of fraction	1,18	0,03	1,01	1,38	1,00	0,98	0,91	1,10
Histology (Reference: Adenocarcinoma)								
Unbiopsied	0,65	0,26	0,31	1,37	0,86	0,36	0,62	1,19
Squamous Cell Carcinoma	1,44	0,30	0,73	2,85	1,32	0,10	0,95	1,82
Performans status (reference: PSO)								
PS1	1,48	0,33	0,68	3,24	1,79	0,003	1,22	2,62
PS2+	1,59	0,37	0,57	4,43	2,63	< 0.001	1,65	4,19
Era of treatment	0,98	0,92	0,71	1,37	0,91	0,26	0,78	1,07

Toxicité équivalente : pneumopathie G3 et toxicité pariétale <2 %

CBNPC localement avancé stade III : Quel traitement?

- Recommandation actuelle: stade IIIA non résécable ou stade IIIB/IIIC ou patients médicalement non opérables.
- schéma « Pacific »
- Radiothérapie thoracique : 60-66Gy en 2Gy par fraction
- Chimiothérapie concomitante
- ► Immunothérapie en entretien si PDL1 > 1% (en RTU si PDL1 < 1%)

CBNPC localement avancé : stade III non opérable pour les sujet âgé

Reference	n	Stage	Median age (range)	Radiotherapy dose/fractionation	Survival	Gd 3+ acute oesophagitis/pneumonitis
Gauden and Tripcony [18]	162	I	(70-92)	50 Gy (2.5 Gy per fraction) minimum tumour dose	34% at 5 years	Not recorded
Furuta et al. [15]	32	I–II	79 (75–86)	>60 Gy (2.0 Gy per fraction)	40% at 2 years	0
Bonfili et al. [14]	36	I–II	77	60 Gy (3.0 Gy per fraction)	55.6% at 2 years	0
San Jose et al. [12]	33	I–II	75 (71–97)	Median 70 Gy (2.0 Gy per fraction)	50% at 3 years	6%
Yu et al [27]	80	I–II	76 (70–84)	66.6 Gy (1.8 Gy per fraction)	55.7% at 2 years	5.1%
Pergolizzi et al. [26]	40	IIIa	77 (75–83)	Median 60 Gy (2.0 Gy per fraction)	18% at 3 years	5%
Lonardi et al. [11]	47	IIIa/b	77 (75–85)	Median 50 Gy (1.8–2.0 Gy per fraction)	10% 2 years	0
Tombolini et al. [13]	41	IIIa/b	75 (70–82)	50 or 60 Gy (1.8–2.0 Gy per fraction)	27% at 2 years	7.3%

Quelques études rétospectives chez les personnes âgés Résultats similaires en terme de survie 10 à 30% de survie à 3 ans Toxicité équivalente (pneumopathie et oesophagite)

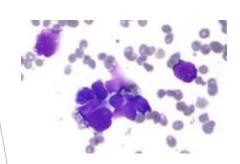
CBNPC localement avancé chez le sujet âgé: radiothérapie thoracique : toxicité?

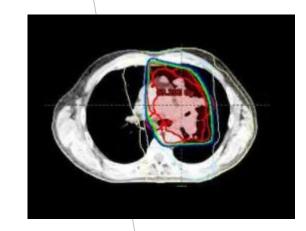
- ▶ 1208 patients provenant de 6 études randomisées EORTC
- Comparaison <70 et >70 ans
- Evaluation pneumopathie, oesophagite et épithélite
- Pas de différence sur la toxicité entre les 2 groupes
- Données anciennes donc anciennes techniques (plutôt rassurant)
- → Âge n'est pas un critère suffisant pour contre-indiqué une irradiation thoracique

CBNPC localement avancé chez le sujet âgé: association chimiothérapie?

- Question de l'association à une chimiothérapie chez les personnes âgés? → RT+CT > RT ?
- Méta-analyse : 407 pts
- ► Comparaison grp <70 ans vs >70 ans
- ► HR: 0,66 pour OS et 0,67 pour PFS
- ► Toxicité équivalente : pneumopathie G3 (5%)
- → Privilégier l'association RT-CT pour les patients « fit » (pas de CI liée à l'âge)

CBNPC localement avancé: quels leviers si RTCT concomitant non réalisable?


- Possibilité d'un traitement séquentiel
 - ▶ Différence significative en survie globale et Survie sans récidive de l'ordre de 5% à 5 ans en faveur du concomitant
 - Mais 5 fois moins de toxicité œsophagienne (toxicité pulmonaire équivalente)
- Association nouvelle drogue avec immunothérapie: essai de phase II AIRING ouvert au centre
- Hypo fractionnement modéré


Carcinome bronchique à Petites Cellules localisé au thorax

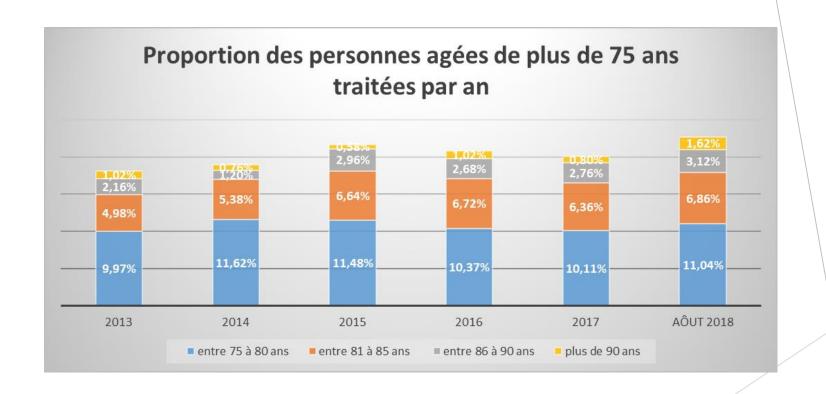
- Recommandation: Radiothérapie et chimiothérapie concomitante
- Essai CONVERT (essai de supériorité comparant 2 schéma de RT normo vs bi-fractionnement CPC localisé)
- Analyse des patients > 70ans
- ▶ 67 / 490 patients (14%)
- ▶ Pas de différence significative en survie globale et survie sans récidive
- ► **Toxicité comparable** (sauf hématologique sans différence sur neutropénie fébrile / hospitalisation)
- Mais 4 patients >80 ans: toxicité pulmonaire (3 G3 et 1 G5)
- → patients sélectionnés +++

Irradiation palliative

- Hémostatique
- Antalgique
- Décompressif (syndrome cave)
- Hypo-fractionnement modérée et accélérée: 30Gy en 10 fct, 20Gy en 5 fct...
- Même efficacité ; même toxicité (22% oesophagite)
- ► Pas de limitation d'âge (hypo-fractionnement modéré)

Conclusion

- ▶ Plusieurs indications de radiothérapie → multiples schémas d'irradiation
- Peu de données pour les patients âgés (patient non ou peu inclus dans les essais malgré une population importante)
- Cancer bronchique localisé: SBRT +++ : efficace et bien tolérée
- Cancer bronchique localement avancé:
 - Attention au volume d'irradiation : toxicité (pneumopathie et oesophagite)
 - Association avec la chimiothérapie? : Concomitant, séquentiel , seule
 - ▶ Voie d'évolution : place de l'hypofractionnement modérée? Immunothérapie concomitante?
- Irradiation palliative : pas de limitation liée à l'âge
- ► Sélection du patient selon les comorbidités: consultation oncogériatrie +++



Merci de Votre attention!

Au centre Eugène Marquis

