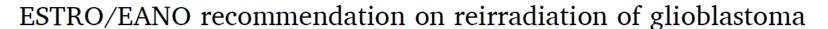


unjcancer

BRETAGNE

Ré-irradiation des GBM

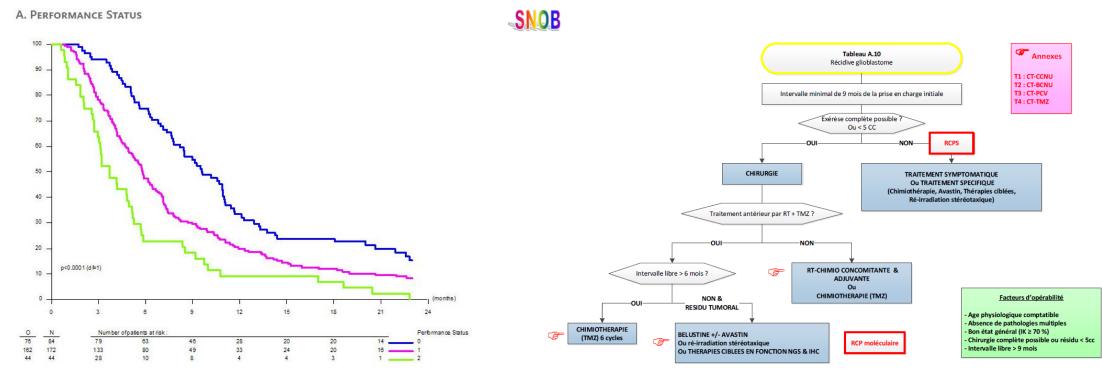
Radiotherapy and Oncology 204 (2025) 110696


Contents lists available at ScienceDirect

Radiotherapy and Oncology

journal homepage: www.thegreenjournal.com

Guidelines


Nicolaus Andratschke ^{a,*}, Astrid Heusel ^a, Nathalie L. Albert ^b, Filippo Alongi ^{c,d}, Brigitta G. Baumert ^e, Claus Belka ^f, Antonella Castellano ^g, Frederic Dhermain ^h, Sara C. Erridge ⁱ, Anca-L. Grosu ^j, Franciscus Lagerwaard ^k, Slavka Lukacova ^l, Per Munck af Rosenschold ^m, Maximilian Niyazi ⁿ, Carsten Nieder ^{o,p}, Matthias Preusser ^q, Marion Smits ^r, Damien C. Weber ^{a,s}, Wolfgang A Weber ^t, Michael Weller ^u, Aoife Williamson ^v, Giuseppe Minniti ^{w,x}

Rationnel de la réirradiation des GBM récurrents ?

Pronostic très péjoratif

Options thérapeutiques très limitées

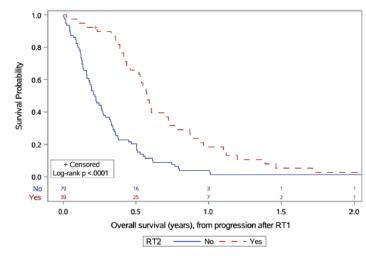
Gorlia et al., EORTC, JCO, 2011

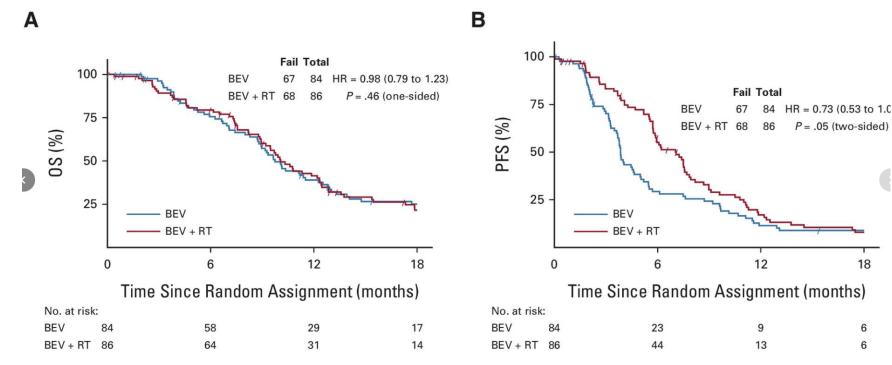
Onco Pretonne Version 14 validée le 04 octobre 2024 24

Nombreuses expériences de réirradiation des années 1920 à 1960.

Rationnel de la réirradiation des GBM récurrents ?

- Gliome infiltrant diffus de la ligne médiane
 - Bénéfice de la réirradiation : clinique et réponses radiologiques
 - Doses de 20 à 24 Gy
 - Contraintes spécifiques à la réirradiation du tronc
 - ▶ Très peu de toxicité



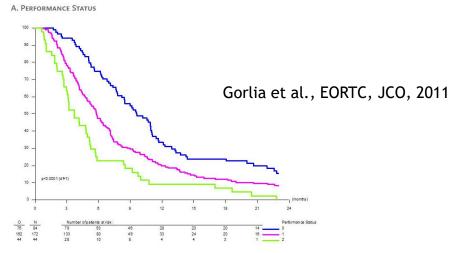

Fig. 1. Overall survival, with index time at progression after RT]

Shariff et al., Radiother Oncol, 2025

Ré-irradier des GBM, à quoi ça sert ?

▶ RTOG 1205, essai phase II : bevacizumab vs bevacizumab + ré-irradiation

- Bénéfice en PFS mais pas en OS
- Traitement globalement bien toléré



Ré-irradiation : sélection des patients

unicancer

BRETAGNE

Facteur pronostic majeur : état général

- Délai > 6 mois depuis RT
 - ► + long recul, moindre risque d'évolution multifocale
 - Délai court = risque de radiorésistance
 - Potentiel de récupération après 6 mois
- Facteurs non démontrés : MGMT, ttt systémique concurrent, taille tumorale, ré-opération

KQ1: Which patients should be considered for reirradiation?	Strength of recommendation	Level of evidence
Recommendations	C+	E
1. Reirradiation of patients with recurrent	Strong	Expert
glioblastoma should be based on individual decision making and should		opinion
only be recommended after careful		
discussion in an MDT balancing risks,		
benefits, and treatment alternatives (100		
%; 19/19).		
2. Reirradiation of patients with recurrent	Conditional	Moderate
glioblastoma may be considered with a		
KPS >= 60 and an interval > 6 months		
from the previous radiotherapy		
independent of age or MGMT methylation		
status (89 %; 17/19).		
3. After gross total resection of recurrent	Conditional	Low
glioblastoma reirradiation may be		
considered in patients with favorable		
prognostic factors (84 %; 16/19).		
Statement		
1. Although reirradiation has not yet been	_	Moderate
shown to provide an OS benefit, a		
prolongation of progression-free survival		
can be expected after careful patient selection (84 %; 16/19).		
Selection (04 70, 10/19).		

Quel bilan avant d'envisager ré-irradiation ?

Distinguer récidive lésionnelle de radionécrose.

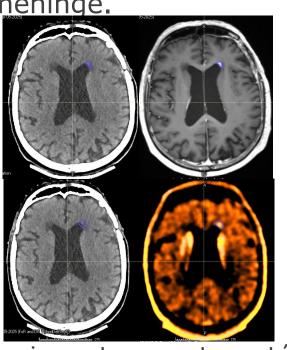
- ▶ IRM multi-modale : T1-gado, T2, T2 FLAIR
 - Séquences de perfusion : néo-angiogénèse
 - Spectroscopie
- Médecine nucléaire : TEP acides aminés

► Importance de l'expertise locale +++

Table 2

Key question 2 recommendations and statements with strength of recommendation and level of evidence; level of evidence in parenthesis (percentage; absolute number of votes per total voters).

KQ2: What imaging is required to assess recurrence after primary treatment of GB?	Strength of recommendation	Level of evidence
Recommendations		
4. To assess recurrence, particularly in-field, contrast-enhanced T1-weighted imaging is required, and the addition of advanced MRI or AA-PET is recommended for its differentiation from pseudoprogression/radiation necrosis (95 %; 19/20).	Strong	Low
Statement		
 Advanced imaging techniques (i.e., perfusion MRI, MR spectroscopy, AA-PET) increase diagnostic accuracy for differentiation of recurrence from pseudoprogression, but no technique, nor combination of techniques, is clearly superior to the other (95 %; 19/20). 		Low



Quels volumes cibler lors d'une

réirradiation?

 Eviter lésions volumineuses > 6 cm, multifocales, avec envahissement lepto-méningé.

- GTV
 - ► T1 gado
 - ► T2-FLAIR
 - ► TEP acides aminés
- CTV
 - Marge pas forcément nécessaire notamment en stéréo
 - ▶ Pas de consensus. Option 3-5 mm
- PTV : < 3 mm, selon pratiques du service

GTV			
KQ3: What are requirements for optimal target definition?	Strength of recommendation	Level of evidence	
Recommendations 5. Rigid image registration for target	Strong	Moderate	

CTV

Strong

Strong

Expert

opinion

Expert opinion

Expert

opinion

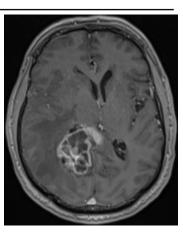
5. Rigid image registration for target volume definition and dose accumulation is recommended (89 %; 17/19).

6. CE-T1-weighted contrast enhancing
lesions, new or progressive T2-weighted/
T2-weighted FLAIR abnormalities, and
AA-PET-avid regions should be included
in the GTV (80 %; 16/20).

7. A CTV margin is not mandatory, but a
GTV to CTV margin of 3–5 mm can be
added optionally (depending on overall
volume, dose/fractionation and pattern of
recurrence), while a maximum CTV to
PTV of 3 mm is recommended (80 %; 16/
20).

Statement

 If functional imaging is considered, both AA-PET as well as advanced MRI are valid options, although no consensus could be reached to whether or not to include perfusion suspect regions into the GTV (80 %; 16/20).


Quels schémas de ré-irradiation proposer?

unicancer BRETAGNE

- Schémas les plus utilisés : 36 Gy / 18 fx ou 35
 Gy / 10 fx > bien toléré
- De plus en plus de données en stéréotaxie
 - ▶ 25-35 Gy en 5 à 7 séances
 - ▶ Dose unique 16-24 Gy
- Pratiques très hétérogènes
 - Globalement même efficacité OS médiane 9 mois
 - ▶ BED10 > 40 Gy en stéréo
 - ▶ BED 10 > 45 Gy en RT fractionnée
 - ▶ Pas de bénéfice à l'escalade de dose > 55 Gy
 - Privilégier les schémas les plus courts possibles

KQ4: What is the recommended dose and fractionation for reirradiation?	Strength of recommendation	Level of evidence
Recommendations		
8. A treatment in which a sufficient dose is delivered is preferred, and therefore, the biologically equieffective dose measured in EQD2 should be no less than 36 Gy in 2 Gy fractions (84 %; 16/19).	Strong	Moderate
9. Single fraction radiosurgery can be used for smaller lesions (e.g. GTV size up to 3 cm) (100 %; 18/18).	Strong	Expert opinion
Statement		
4. Prospective evidence with regards to safety and efficacy only exists for lesion sizes up to 6 cm (100 %; 18/18).	_	Expert opinion

- Volumineuses lésions :
 - RT fractionnée 36 Gy/18 fx
 - Petites lésions :
 - RT stéréo en séance unique
- Entre les deux :
 - Hypofractionnement 35 Gy/10fx
 - Stéréo fractionnée 30 Gy / 3 à 5 fx

Plannification d'une réirradiation

unjcancer

BRETAGNE

Cumul de dose EQD2 ($\alpha/\beta=3$)

- Contraintes aux OAR :
 - Pas de consensus en réirradiation
 - Si possible contraintes primoirradiation
 - Contraintes spécifiques en réirradiation de plus en plus souvent proposées

	OAR	Objective(s)
	BRAINSTEM	$\begin{array}{l} D \leq 54 \; Gy \; [72] \\ D_{0.03cc} \leq 56 \; Gy^{**} \\ 1-10 \; cc^{***} < 59 \; Gy \; (periphery) \; [72] \\ Surface \; D_{0.03cc} \leq 60 \; Gy \; [73]^{**} \\ Interior \; D_{0.03cc} \leq 54 \; Gy \; [73] \end{array}$
	CHIASM	D _{max} < 55 Gy [72]
n	COCHLEA	D _{0.03cc} ≤ 55 Gy [73]** Ideally one side mean < 45 Gy [74] ALARA
	EYES	Macula < 45 Gy [75]
	LACRIMAL GLANDS	Eye balls $D_{max} \le 40$ Gy** (low priority) $D_{max} < 40$ Gy [76] $Mean \le 25$ Gy [73] ALARA
	LENS	Ideally < 6 Gy
	OPTIC NERVES	$\begin{aligned} &\text{Max 10 Gy [76]} \\ &D_{\text{max}} \leq 54 \text{ Gy [77]} \\ &D_{\text{max}} < 55 \text{ Gy [72]} \end{aligned}$
	PITUITARY	$D_{0.03cc} \le 56 \text{ Gy}^{**}$ $D_{max} < 50 \text{ Gy } [78]$ ALARA

TABLE 3 Expert consensus-based cumulative dose guidance for normal tissue in reirradiation.

Organ	Desirable cumulative EQD2Gy ^a	Acceptable cumulative EQD2Gy ^a	α/β value ^a	Reference
Brain stem	$D_{0.03cc} \leq 70.2 \; Gy$	D _{0.03cc} < 81 Gy	Not specified	Ng 2021 ⁴³
Spinal cord	$D_{0.03cc} \leq 58.5 \text{ Gy}$	$D_{0.03cc} < 67.5 \text{ Gy}$	Not specified	Ng 2021 ⁴³
Optic chiasma	$D_{0.03cc} \leq 70.2 \text{ Gy}$	$D_{0.03cc} < 81 \text{ Gy}$	Not specified	Ng 2021 ⁴³
Optic nerve	$D_{0.03cc} \leq 70.2 \text{ Gy}$	Unilateral: No dose constraint if the patient accepts Bilateral: $D_{0.03\text{cc}} < 81~\text{Gy}$	Not specified	Ng 2021 ⁴³
Temporal lobe	$D_{0.03cc} \leq 91 \; Gy$	$D_{0.03cc} < 105 \text{ Gy}$	Not specified	Ng 2021 ⁴³

Niyazi et al., Radiother Oncol, 2023

KQ5: What is the preferred treatment planning and delivery method? KQ6: How should cumulative doses be assessed with regards to safety?	Strength of recommendation	Level of evidence
Recommendations 10. Advanced IGRT techniques should be employed for high dose reirradiation (95 %; 18/19).	Strong	Low
11. EQD2 dose recalculation is preferred (over BED and EUD) and should be used for dose accumulation, as it is most commonly used in the literature and easy to interpret (89 %, 16/18).		Moderate
PTV prescription and compromise should follow the following cascading steps: No PTV compromise if cumulative OAR	Strong	Expert opinion
doses are deemed safe and/ or acceptable. 2) PTV compromise allowed to keep cumulative OAR doses safe and/ or acceptable.		
 If a reasonable CTV / GTV dose coverage is not to be achieved, dose prescription may be adapted to reach safe or acceptable OAR doses. (88 %; 15/17) 		
13. Recovery from previous irradiation has only consistently been described for brain tissue and spinal cord and thus, should only be considered for assessing cumulative doses in these organs (88 %; 16/17).	Strong	Low
Statement		
 The minimum set of OAR to evaluate after biological dose accumulation include: brain, brain stem, optic chiasm, optic nerves/ tract, cranial nerves in close proximity to PTV (89 %; 16/18). 	-	Expert opinion
 Both methods of dose accumulation are considered valid when assessing cumulative doses to brain tissue: a) Same OAR constraints as for first course; dose discount for first course considered. 	-	Expert opinion
b) Cumulative OAR constraints used. (100 %; 17/17)		
 As there is considerable uncertainty about recovery of optic chiasm and optic nerves' function, allowance of cumulative doses should be carefully assessed (100 %; 18/18). 	-	Expert opinion

Ré-irradiation : place des traitements systémiques ?

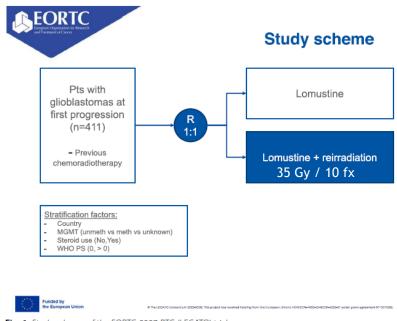
- Intérêt controversé : manque de données d'essais randomisés
- Ajout du TMZ :
 - Comparaison d'essais sembleraient en faveur d'une meilleure PFS et OS
 - Principalement chez MGMT methylés : intérêt de la réirradiation ?
 - ▶ Tolérance re-RT + TMZ similaire à re-RT : < 10 % grade III
- Ajout du bevacizumab
 - Bevacizumab + re-RT bien tolérée : < 5% tox aigue GIII, pas de tox tardive
 - Diminue le risque de radionécrose

Pas de recommandations d'association

Table 6

Key question 7 and 8 recommendations and statements with strength of recommendation and level of evidence; level of evidence in parenthesis (percentage; absolute number of votes per total voters).

entage; absolute number of votes per total voters).			
KQ7: What is the evidence for combined modality reirradiation? KQ8: What is the role of maintenance systemic therapy after reirradiation?	Strength of recommendation	Level of evidence	
Recommendations 14. When considering combined modality treatment, there is no need to change target definition, dose and fractionation (94 %; 17/18).	Strong	Expert opinion	
15. The use of systemic treatment together with reirradiation of recurrent glioblastoma should be further explored in prospective clinical trials (95 %; 18/ 19).	Strong	Expert opinion	
Statement 8. A clear recommendation for this approach, especially with respect to a specific drug combination, cannot be given [94 %; 17/18].	-	Moderate	
Currently, data are insufficient to support the routine use of concurrent or maintenance systemic therapy after reirradiation (89 %; 16/18).	-	Expert opinion	



Ré-irradiation des GBM: points clés

- Objectifs de ces recommandations : harmonisation des pratiques.
- Niveau de preuve : jamais fort, au mieux modéré, le plus souvent basé sur des opinions d'experts.
- La réirradiation des glioblastomes fait partie des options de traitement des glioblastomes récidivants chez des patients sélectionnés.
- ▶ Efficacité attendue principalement sur la PFS : importance de la qualité de vie.
- Toxicité très limitée.
- Nécessité d'essais prospectifs de phase III pour valider sa place.

LEGATO: essai EORTC phase III

Critères inclusion: Primary endpoint: Overall survival

Secondary endpoints

Progression-free survival Toxicity

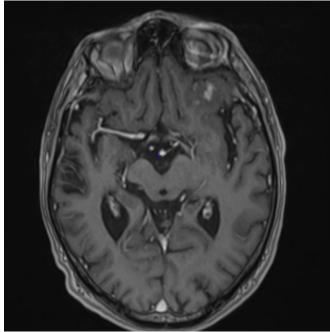
Quality of Life

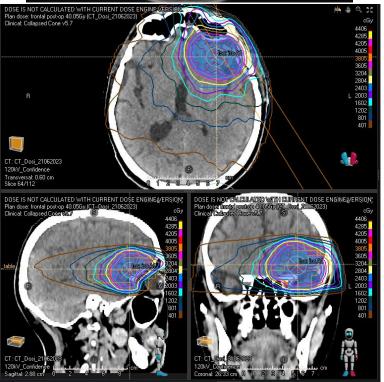
Health economics

- Progression/récurrence au 6 mois après RT
- **GBM IDH-WT**
- CTC stables ou en diminution la semaine avant l'inclusion
- Taille maximum de la lésion < 5 cm
- ► PS 0-2

Fig. 1 Study scheme of the EORTC-2227-BTG (LEGATO) trial

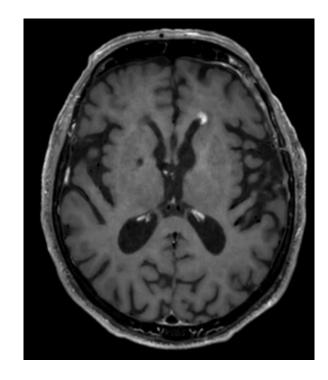
Preuser et al., Trials, 2024.

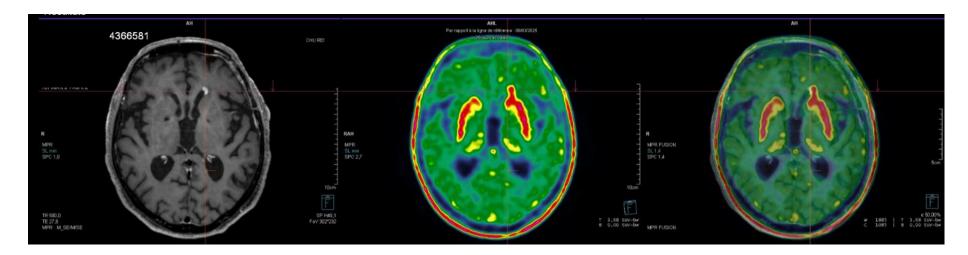

Ré-irradiation: pour résumer


- Le bon patient : volume faible, bon état général, intervalle depuis pec initiale le plus long possible
- ▶ Le bon bilan : multimodal selon expertises locales : IRM multiparametrique + TEP
- ▶ Le bon volume : GTV + marge limitée, maximum 3-5 mm
- Le bon fractionnement : dépend essentiellement de la taille de la lésion
- ▶ Le moins de risque possible : cumul et respect des contraintes aux OAR (tronc, voies optiques...)
- Place par rapport à un traitement systémique: très variable, à discuter au cas par cas en RCP

Mr G., 78 ans

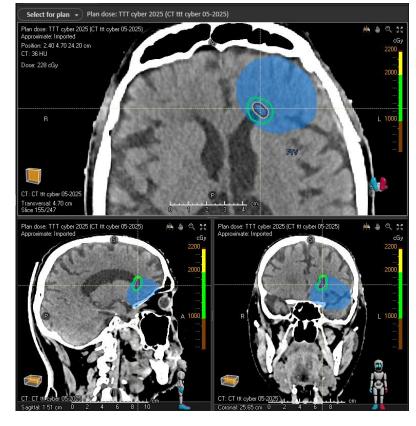
- Février 2023 : crise d'épilepsie généralisée
- ▶ Biopsie : Gliome haut grade, pas d'expression IDH 1
- Résection neurochirurgicale le 1^{er} juin 2023, exérèse complète sur IRM post-opératoire
- ▶ Radio-chimiothérapie 40 Gy / 15 fractions
- ► Temodal adjuvant 6 cycles jusqu'au 22/01/24

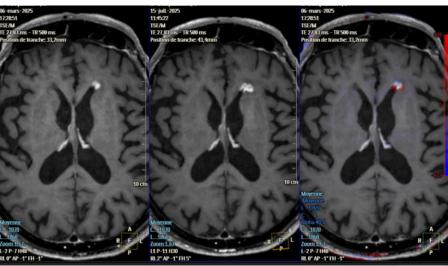




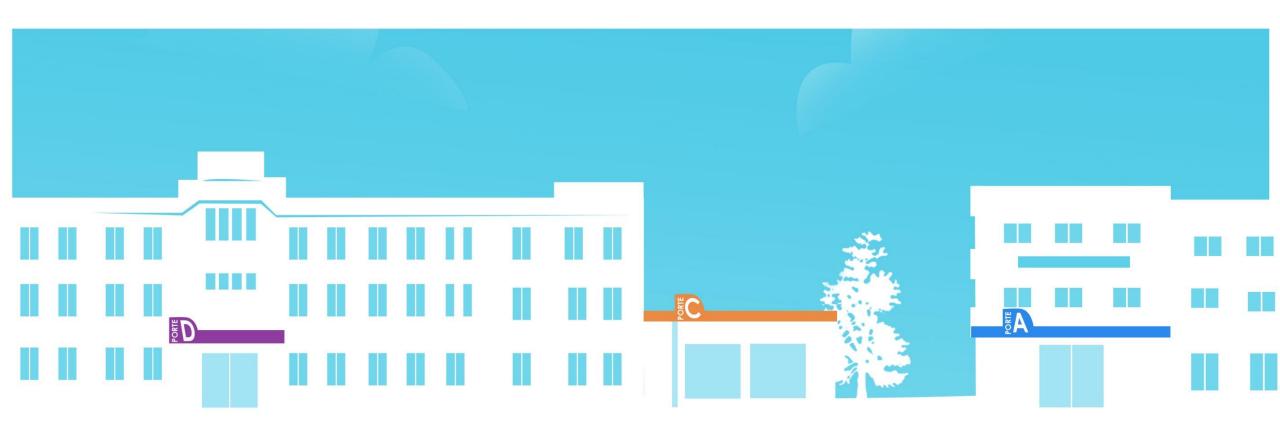
Mr G., 78 ans

- ► IRM Mars 2025 : majoration d'une pdc nodulaire corne frontale du ventricule latéral gauche, suspecte.
- ► TEP-DOPA : hypercaptation suspecte





Mr G., 78 ans


Réirradiation stéréotaxique 20 Gy, 1 fraction, cyberknife le 09/05/2025

- Bonne tolérance, IRM à 2 mois en juillet 2025 :
 - Majoration en taille de la pdc au contact de la corne ventriculaire frontale G
 - Apparition de 2 nouvelles pdc dans la substance blanche adjacente, suspectes
- Reprise temodal

